Matemática discreta es la parte de la matemática encargada del estudio de los conjuntos discretos: finitos o infinitos numerables.
En oposición a la matemática continua, que se encarga del estudio de conceptos como la continuidad y el cambio continuo, la matemática discreta estudia estructuras cuyos elementos pueden contarse uno por uno separadamente. Es decir, los procesos en matemática discreta son finitos y contables.
Mientras que el cálculo es primordial en el estudio de procesos analógicos, la matemática discreta es la base de todo lo relacionado con los procesos digitales, y por tanto, se constituye en parte fundamental de la ciencia de la computación, una de las ramas de estudio impartidas en los estudios de Ingeniería Informática.
Generalmente se incluyen los siguientes temas de estudio[1] :
* Lógica proposicional
* Teoría de la computabilidad
* Teoría de complejidad computacional
* Teoría de conjuntos
* Teoría de grupos
* Teoría de grafos
* Teoría de autómatas finitos
* Combinatoria y nociones de probabilidad
* Análisis de ciertos algoritmos
* Teoría de la información
Las matemáticas discretas, a diferencia del cálculo infinitesimal, estudia procesos con conjuntos contables o numerables, ya sean finitos o infinitos.
Su entorno de trabajo son los números naturales o los enteros:
N = { 1,2,3,... }
Z = { ..., -3,-2,-1,0,1,2,...}
Esto a raíz de que los objetos en matemáticas discretas son contables, ya sean finitos o infinitos, es decir, se pueden contar de uno en uno por separado.
La clave en matemáticas discretas es que no es posible manejar, al igual que en el cálculo, las ideas de proximidad o límite y suavidad en las curvas. Por ejemplo, en matemáticas discretas una incógnita puede ser 2 o 3, pero nunca te aproximarás a 3 por la izquierda con 2.9, 2.99, 2.999, etc. Las gráficas en matemáticas discretas vienen dadas por un conjunto finito de puntos que puedes contar por separado, mientras que las gráficas en cálculo son trazos continuos de rectas o curvas.
La idea clave del cálculo es el límite y su entorno son los números reales. Sus variables son continuas o analógicas.
La idea clave en matemáticas discretas es el conjunto numerable y su entorno son los números enteros. (Los naturales son un subconjunto de los enteros). Sus variables son discretas o digitales.
Estudios recientes confirman que la mente de los individuos se orienta más hacia alguna de las dos tendencias: a la matemática discreta o a la matemática de la continuidad y el cambio, es decir, al cálculo.
No se puede decir que alguna de las dos sea más fácil, pues el nivel de complejidad de ambas materias es sumamente elevado. Sin embargo, parece que ha tenido más preponderancia hasta la década del 90 el cálculo y ahora se estudian más las matemáticas discretas como una tendencia reciente, especialmente por la computación digital y la informática.
ACCEDE AL CURSO DE MATEMATICA DISCRETA
No hay comentarios:
Publicar un comentario